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ABSTRACT

In this paper a new approach is presented for efficient computation

of the vector potentials arising in the problem of a current element radiating

over a iossy half—space. The present approach departs from the conventional

ones in that it works primarily with the transform domain representations

rather than with the Sommerfeld integrals which are the corresponding spatial

domain counterparts. The key step in the present method is to approximate

the transforms using a suitable approximation which is valid for a wide range

of parameters of practical interest. The approximated transforms c~n be

inverted in a closed form for the horizontal component of the vector potentials

and can be expressed in a computationally efficient form for the vertical

component ( a ) .  Numerical results illustrating the accuracy of the method are

presented in the paper and some estimates of comparative computational times

also are included.

V 

. V . V



TABLE OF CONTENT S

V Page

V • 1. Introduction 1

2. Transformed Vector Potentials 2

3. Approximate Expressions for the Transformed Vector Potentials 6

I 4. Numerical Results and Conclusions 15

I REFERENCES 17

vii .,

.
~~ •

.
-~ 

• —
~~~~~~



- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —

V LIST OF FIGURES

Figure Page

- 1. Geometry and the coordinate systems for the current element
P 1 radiating over imperfect ground , where 1 and

~2r 
C
r 

— has been assumed 3

ix

LL~~~~~ ..~~~~~~~ V VV_.. 

. —

~~ 

—. -— - - • 1
V ~~~~~~~~~~~ ~~~~~~~~~ VVV-~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~ ..



-~ 
V V - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V VV ~~ .V V~~.V~V- ~~~~~~~~~~~ — ~~~~~~~~~~~~ - V -- ~~~~~~~~~~~~~~~~~~~~~~ V — -~~~ • V V~~~~~~~~V~ -

LIST OF TABLES

Table Page

1. Demonstration of the stability of the present technique for
evaluating ~~ as a function of z’ 10

2. ~iI evaluation by three techniques for C 40 , a 1. mhos/m ,
r
2
Xo. 10 m , 02 

= 10°, and 0 11

3. II evaluation by three techniques for ~ 40 , a 1. mhos/m ,
10 in, 

~2 
10° , and — 0 12

evaluation by three techniques for = 10 , a = .01 mhos/m ,

2 
10 Tfl~ ~2 = 100 , and 0° 13

5. rt evaluation by three techniques for C = 10, ~ .01 mhos/ni,
r~~.1Om , 0

2
= 1O 0, and 42

= O 0  14

V  xi 

V V • •V • V V~~~~~~~~ .~~ V~~ VV ~~~ •

~~~V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V



___________________ _ _ _ _ _  -V ~~~~~~~~~~~~~~~~~~~~ V

1. Introduction V

The conventional approach to analyzing antenna structures radiating

in the presence of a lossy half—space involves repeated evaluation of the

Sommerfeld integrals appearing in the expressions for the vector potentials V

[1 1. Since the evaluation of these infinite integrals is an extremely

time—consuming process, touch attention has been focused in recent years on

developing techniques for efficiently evaluating the Sommerfeld integrals

without unduly sacrificing the accuracy [2— 81 . However , even the latest

reported techniques for evaluating the Sommerfeld integrals are 40 to 100
V 

times slower than the Reflection Coefficient Method (RcM) , which evaluates

these integrals asymptotically and is valid for large kr (where k is the V

free space wave number, and r is the distance between the image and

observation points).

In this paper, we present a new approach for rapid and accurate

numerical evaluation of the vector potentials that avoids the tedious task

of handling the Sommerfeld integrals. We begin with the two—dimensional

Fourier transforms of the vector potentials which are conveniently expressed

in simple closed forms. Next, we show that under a suitable approximation

the inverse transform of the vector potentials can be performed analytically

using a set of identities. The resulting space domain expressions are either

expressed in a closed form or require evaluating a finite integral. These

expressions are valid for a wide range of frequencies , ground parameters , and

observation points.

In the following sections, the use of the above procedure is demonstrated

by considering a horizontal current element over lossy ground, ‘m d  several

numerical examples are included to illustrate the accuracy and computational

efficiency of the method.. We find that the computational time is only slightly

1
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larger than the reflection coefficient method (RcM) and the accuracy of the 
V

results is good for a wide range of parameters of practical interest.

2. Transformed Vector Potentials

The fields radiated by a horizontal current element over a iossy

ground (see Fig. 1) can be expressed in terms of two vector potential

componen ts rt
~ 

and fl (5,8]. We define the following two—dimensional Fourier

transform pair:

~ exp[-j(ax + ~y)1 
dx dy (la)

= —~~~~~ f J  ~ axp (j(ax + 0y) ] dct dO (ib)

where the - on top represents the transformed quantities. It has been

shown (5 ,8] that, using the exp (jwt) time convention and for observation

points above the lossy ground, the following expressions for the vector

potentials satisfy the Maxwell’s equations and the required boundary

conditions:

I

i r— rt +~~ + n
~ x O x

1— ~~ 2j ‘y~1 
exp (—j y

1 1 z— h I] (2b)

1
0 ~~~ 

exp (—j y
1
(z+h)] (2c)

V - 
V .  _ _ _ _  V V

~~~~
- -
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Figure 1. Geometry and the coordinate systems for the current
element P1 radiating over imperfect ground , where
C = 1 and C C — j a/ (~c ) has been assumed.
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0~x ~O j (y1+ f 2
) ex p(-j y

1
(z+h) ] (2d)

and

= I~ j~ exp(-j y1
( z+h) ] (3)

where

= (k~ - ~2 - ~2 ] h12 ; Im(Y
~

) < 0 ; i - 1,2 (4a) I

1
0 

= Idx ’ (4b )

= u
~~4 Oc . r c O ; i — 1,2 (4c)

< = ~~~ . 
(4d)

-Zr- ir

Equations (2b) and (2c) are the solutions to the problem of a current element

radiating in free space and can be interpreted as the direct and the

• 
I 

reflected contributions to the field at the observation point for a perfectly

conducting ground. Their inverse transforms are expressed in the following

well—known space domain forms:

a-

4

~~~~TV- TT1~~~~~~~V-~~~~~~~~~~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— 1
0 

exp (—j k1 r1
) / 41Tr

1 
(5a)

— .-t~ exp(—j k1 
r.) / 4irr

2 
(5b)

where (r1,e1,~1
) and (r2592,p 2

) are the spherical coordinate systems

erected at the source and its image point respectively . Equations (2d)

and (3) are the correction terms to the perfect ground solution and are not

directly amenable to inversion in closed forms. Traditionally , these two

equations are transformed into space domain representations comprised of

inf ini te  integrals that are oscillatory in nature. These integral representa—

tions take many different forms and the following are examples which

contain the Hankel functions:

O~x ~r 
~~ /k~~A 2 + /KkFA Z ~~~ (ox) exp(~jz2

/~~_X
Z)dA (6a)

and

- _

~~~~l 
cos~ , f x 2 ~~~~~~~~~~~~ H~

2
~

exp(— jz,~k~—~~) dA . (6b)

S

_ _  
______________________ 4
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The integrals appearing in equations (6a) and (6b), better known as the

Sommerfeld integrals, are quite time—consuming to evaluate and rcpresent

a major hurdle to the task of efficient analysis of antennas located

over a lossy ground. Many of the recent works in the literature 14—8]

have concentrated on the problem of reducing the computational time

required in the evaluation of the Sommerfeld integrals without sacrificing

the accuracy beyond a tolerable level. In the following sections, an

alternate approach is proposed for Fourier inverting (2d) and (3) in a

more direct manner which circumvents the need for computing the Sommerfeld

integrals (6a) and (6b).

3. Approximate Expressions for the Transformed Vector Potentials

An examination of the expressions for transformed vector potentials

given in (2d) and (3) reveals two important and useful properties. First,

both of the equations have an identical z—variation that corresponds to a

space domain solution emanating from the image point of the original

dipole source. Second,it is apparent that the two equations are well

behaved in the Fourier transform domain and decay exponentially to zero

outside the circle + ~
2 

— k~.

Starting from the transform pair (2c) and (5b), one can generate

a set of useful identities by successively applying the operator a/az to

the transform pair. tje have, for instance .

Q — y
~~

1 
exp[—j y

1 
(z+h)] (7a)

Q — 2(j)~~~ -

~

-- g ; n — 0,1,2,... (7b)

6
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where g is the free spaca Green ’ s function 
V

g(x ,y z) — exp(—j k1 r 2 ] / ; r 2 
— ,iX~ .4. + ( z+h )~ . (8)

t .

4e also note that the successiVe partial derivatives of g can be obtained

explicitly ; hence, (7b) is expressible in a closed form. We will now

attempt to approximate the transform ed vector po tentials 0~~ 
and

given in (2d) and (3), such that the inverse transform operation is performed

via (7a—b) without an undue sacrifice in the accuracy . To this end , we

introduce the only approximation needed to accomplish this goal, by Letting

(9)

Kuo and ~1ei (7 , Eq. 8] have employed this approximation to manipulate the

Sommerfeld integrals (6) and have found it to be accurate inside V

2 2 2 -toe ~ + 3 — c~rcle rot most practical parameter ranges of interest.

In addition, outside the circle of visible range, the decaying exponential

overcomes most oi the errors introduced by the substitution of (9) into

(2d) and (3).

3a. Approximation for rr~
The transform O~:c’ 

given in (2d), can be ~ri::an in ~~e following

form

~~~~~~~ 
— ~~ 

~~~~~~~~~~~~ 
exp(—j ‘

~i 
(z+h)] (10)

V (1—c ) —

- —-- -
~~~~-- - - - - - - t  

~~V_V_ _-V__  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —
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Introducing the approximation in (9) and using the identities in (7) ,

one can express the space—domain expression for in a closed form

2

O~x 
— 1

0 jk (1 K) ~~~~~ g - 10 
~~ -

~
-
~~ g (11)

Befo re closing this subsection , it may be worthwhile to point out
V 

one of the key differences between the Kuo and Mci scheme [7] and the present

method, both of which employ identical approximations. In contrast to

the mathod in (7], the present approach requires no numerical integration

and generates the O~x 
solution entirely in a closed form.

3b. Approximation for 11,~

The expression for fl~ , given in (3) , can be rearranged into the

following form

- 10 
—

~~
-
~~--- (l-(K+l) K 

] exp(-j 
~l 

(z+h)] . (12)

1 2 41

Again introducing the approximation expressed in (9), one can further

simplify (12) into 4

— ex p(—j  y
1~ 

(z+h) ] — 1
~ 

c ~ K+l ) P (13)

where

P — exp(—j y 1( z+h) ] (14a)

c — k1/~’~~ . (14b )

LI 
___ ____ 
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The space—domain expression for ~t can now be expressed in terms of P,

the inverse transform of P. given in (14a) as

4 — ~ ~~~~~ 
______ 

— ~ 
c(<+L ) 

~ (15)
z O

k
Z

<

V
~~~

C
~~~~~~~ 

0 1

Using the identities in ( 7 ) ,  it can be shown that P satisfies the following V

first—order linear inhomogeneous differ ential. equation

— j c P  — 2j (16)
3z ~x ~z

The boundary condition required for the above differential equation can oe

imposed by evaluating the asymptotic solution to the vector potential

exp ression in (15) , derived in ( 5 ] ,  at an observation point which is

s u f f i c~ antlv high above ground . The asymptotic ~o 1ucion is given by

cos — vK —sin ~~ 1
- 2 1 cos ~~, sin ~ cos 

~~~~ V -za 0 - 2 - ~cos +

axp(_j k
1
r,)/4 1T r~ (ira)

tsing (l~ a) in (13), we arrive at

-l __?(z ’) — c(<+l) za ~~~~~~~~ + x ~z ~~z ’)J ( . T h~

~~~~~~~~~~~ ~~~
‘ is a suitable height at which the aC~ approximation irL (l~ a .~

is valid . We point out that for  the sake of simp licity , the :c and ‘~

depend.oces of the P . and ~ have ~een suppressed from their arguments.

The solution for ? can ~e obtained by thr sgr a ting ( 16) and one can arrive
V at the following form which is convenient for numerical computation :

3

- -— .

~ 

--.-
~~~~~~

---- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —---



(z+h)/X (z’+h)/~t IT (present method)
a 

~~io
3

.4 2 .50 1.82 — j.953

.42 .75 i.76 — jl.39

.42 1.00 1.57 — jl.3l

.42 1.25 1.64 — j l .22

.42 1.50 1.68 — j l .29

.42 1.75 1.63 — Jl.30

.42 2.00 1.62 — jl.25

3
At (z+h )/X — .42 Exact x 10 1.58 — j l .29

3
At ( z+h )/X — .42 RCM x 10 — 1.64 — j.773

TA3LE 1. D~~onatration of the s tability of the present technique for
evaluating II , as a function of a ’ . Fo r this example ,

— 10, o ~ .01 uthosfm , frequency — 18 MHz , r
2
/A — .6,

and 82 — 45°.

Ii

V 10 
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P(z) — CP(z’) — 2j j~ 
g(z’3] exp [jo (a-a ’)] + 2j .~~~~ g ( z)

—Zc exp(jcz) f ~~~ g (z )  ex p (— J cz) dz • (1.8)

Several. imoortant features of the integral ap~earin~ in (18) ‘sill V

now be pointed out. First, as seen in Table 1, the results of integration

are quite stable as a function of z ’ . For example, for z ’/ X  > 1.0 the

difference between the exact rt~ values and those computed by using the

expression derived here is less than SZ for z/\ — 0. 1+2.  Second ,. for the

range of paramet ers investigated thus far , the intagrand has been found to

oe quite smooth. This is due partly to the fact that the singularity

associated with g is located at P, (see Fig. 1) and because the range of

integration is less than one wavelength. As a result of these properties,

the numerical intagrac~on in (18) can be~ carried out quite rapidly. 
V

Finally, because the parameter z apoears only in the limit of the

integral, and not in the integrand itself, the values of vector potential

T along an entire vertical line can be rap idly generated by simply marching

on the incremental integration steps. This is in contrast to the conventional

integrals where the entire integrand mus t be recomputed for  each value of

V the obser”7ation point z .

4. Numerical Results and Conclusions

Tables 2—3 compare the accuracy of the present ~ t and T expressions ,

V 
given in (11) and ( 13), with those obtained via the exact and asymptotic

V evaluations of the Som erfeld integrals . The presen t technique is virtually

as accurate as the exac t integration for a relatively high conducting ground - V

(or <~ large) such as sea vater (see Tables 2—3 ) even for extremely small
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image to observation point distance r2/X. For less conducting grounds

(or ~j small) , the approximation of y
2 defined by (9) introduces some

errors as r2/~\ decreases (see Tables 4—5). However the results are still.

useful for most practical antenna problems and remain superior to those

derived by using the RCM method .

The procedure has been successfully tested for a wide variety of r2,

and I I C I > 5. On the Cyber—l75 computer, the evaluation of a and IT

pair for a given observation point required - 5 msec for the present technique ,

while the Ra-1 method needed 1 msec , and a recent efficient Sommerfeld exact

integration technique (5,8) typically required 40—60 insec of computing time.

Although not discussed here, it is worthwhile to mention that the

problem of a vertical, dipole radiating over a iossy ground can be handled

in a similar manner. The analysis of various antenna structures , comprising

both horizontal and vertical wire sections over a iossy ground , will appear

in a future communica tion.
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